Differential operators on Hilbert modular forms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential operators on Hilbert modular forms

We investigate differential operators and their compatibility with subgroups of SL2(R) n. In particular, we construct Rankin–Cohen brackets for Hilbert modular forms, and more generally, multilinear differential operators on the space of Hilbert modular forms. As an application, we explicitly determine the Rankin– Cohen bracket of a Hilbert–Eisenstein series and an arbitrary Hilbert modular for...

متن کامل

Operators on Hilbert - Siegel Modular Forms

We define Hilbert-Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert-Siegel forms (i.e. with arbitrary Siegel d...

متن کامل

Hecke Operators on Hilbert–siegel Modular Forms

We define Hilbert–Siegel modular forms and Hecke “operators” acting on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear transformations are not linear operators until we consider a direct product of spaces of modular forms (with varying groups), modulo natural identifications we can make between certain spaces. With Hilbert–Siegel forms (i.e. with arbitrary Siegel d...

متن کامل

Hecke Operators and Hilbert Modular Forms

Let F be a real quadratic field with ring of integers Ø and with class number 1. Let Γ be a congruence subgroup of GL2(Ø). We describe a technique to compute the action of the Hecke operators on the cohomology H(Γ ;C). For F real quadratic this cohomology group contains the cuspidal cohomology corresponding to cuspidal Hilbert modular forms of parallel weight 2. Hence this technique gives a way...

متن کامل

Modular forms and differential operators

A~tract, In 1956, Rankin described which polynomials in the derivatives of modular forms are again modular forms, and in 1977, H Cohen defined for each n i> 0 a bilinear operation which assigns to two modular forms f and g of weight k and l a modular form If, g], of weight k + l + 2n. In the present paper we study these "Rankin-Cohen brackets" from t w o points of view. On the one hand we give ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2007

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2006.03.005